Form C: Type Test Verification Report

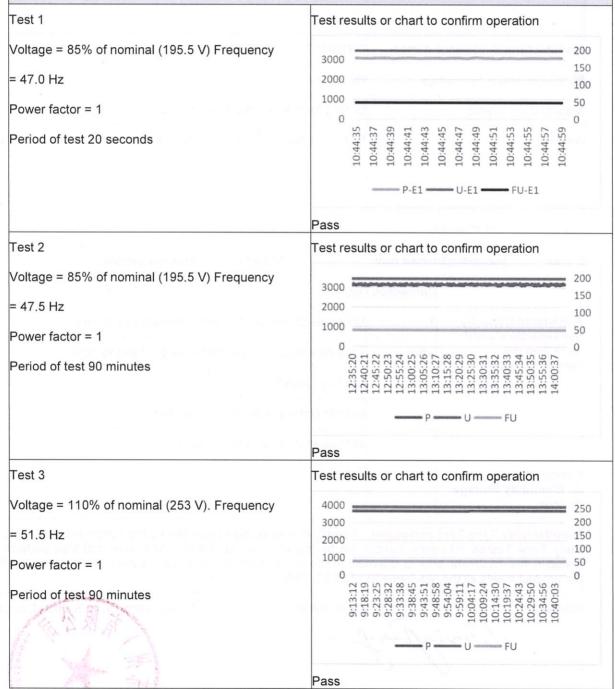
All Micro-generators connected to the **DNO Distribution Network** shall be **Fully Type Tested**. This form is the **Manufacturer**'s declaration of compliance with the requirements of EREC G98.

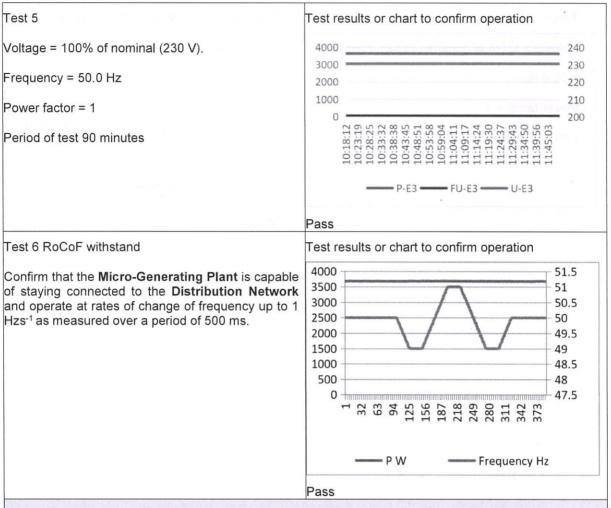
This form should be used when making a Type Test submission to the Energy Networks Association (ENA) Type Test Register.

If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA Type Test Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the system reference), and this form does not need to be submitted.

Manufactu	ırer's referenc	e number	DN1H-3KTL,	DN1H-3KTL, DN1H-3.68KTL					
Micro-gen	erator technol	ogy	Hybrid Invert	Hybrid Inverter					
Manufactu	Manufacturer name			nology Suzhou	ı Co., Ltd.	STANDONE			
Address			Building 2, N	o.1008 Xihong	Road, Wuzhong District,	Suzhou City			
Tel	181277615	21	25850	Fax	1				
E-mail	liaojianlin@	dunext.com		Web site	www.dunext.com				
Colonia digital	The Party of Control of the	Connection	Option	e carageas 1	The second secon				
Registered use separa	d Capacity,	3	kW single phase, single, split or three phase system						
more than connection	one	3.68	kW single ph	ase, single, sp	lit or three phase system	112 0 00000			
connection	орион.		kW three pha	ise					
			kW two phas	es in three pha	ase system				
			kW two phas	es split phase	system				
Energy storage capacity for Electricity Storage devices		kWh							

Manufacturer Type Test declaration. - I certify that all products supplied by the company with the above Fully Type Tested reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98.


Signed On behalf of Dunext Technology Suzhou Co., Ltd.


Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

Operating Range: This test should be carried out as specified in A.1.2.10.

Pass or failure of the test should be indicated in the fields below (right hand side), for example with the statement "Pass", "No disconnection occurs", etc. Graphical evidence is preferred.

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2

	generator rating po (rpp)			3		kW	
NA End For 3-F sue 1-F measu age 50 harmor replica	pineering Recomme lhase Micro-gener Amendment 7 022 rements are identica nics are not identica te this section with	endation (ators, tick al for all t al for each the result	598 this box i hree phas phase, p s for each	if harmoni es. If the lease phase.	С	; e	
Harm onic	At 45-55% of Reg		100%	of Regis		-	
	Measured Value Amps	MV in	Measure in Amps	ed Value N	MV	Limit in BS EN 61000-3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0.002		0.004		1-96	1.080	
3	0.123 9		0.138 6		2500	2.300	
4	0.002		0.002			0.430	
5	0.075		0.070			1.140	
6	0.003		0.003 6			0.300	
7	0.058 8		0.058 6			0.770	
8	0.002		0.003 5		Cau	0.230	
9	0.049		0.051		ECTIO	0.400	
10	0.003		0.003		3° E 10	0.184	
11	0.040 7		0.038		s No 0	0.330	
12	0.004		0.002 7		Tal C	0.153	
13	0.040		0.039		79.7	0.210	
14	0.002		0.002 5		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.131	
15	0.038		0.038		<u> </u>	0.150	
16	0.003		0.001		6.00	0.115	

² See the note in A.2.3.1 if 45-55% of **Registered Capacity** is below the minimum stable operating level. If an alternative loading level is chosen, the level should be indicated on the test form and the reason for not testing at 45-55% of **Registered Capacity** should be stated. The additional comments box at the end of the harmonics test sheet can be used for this.

17	0.036		0.033	0.132	
18	0.003 6		0.002	0.102	
19	0.033	20,790	0.030 6	0.118	
20	0.002		0.001	0.092	
21	0.024 5	f ge f	0.023	0.107	0.160
22	0.002 7		0.003	0.084	
23	0.017 7		0.015	0.098	0.147
24	0.003		0.002	0.077	
25	0.008		0.006 7	0.090	0.135
26	0.005		0.003	0.071	
27	0.006		0.005	0.083	0.124
28	0.003 5	7-	0.002 9	0.066	
29	0.002	- 77 G	0.006	0.078	0.117
30	0.002	274 €	0.003	0.061	
31	0.002 4	2.47	0.003	0.073	0.109
32	0.003		0.003	0.058	
33	0.004		0.002	0.068	0.102
34	0.002	3 + 1 0	0.002	0.054	
35	0.002 7		0.003	0.064	0.096
36	0.004		0.003 5	0.051	
37	0.004	20 mg 2 md - g 10 20 mg - 2 mg 1	0.004	0.061	0.091

38	0.001		0.006 3		05.00 A	0.048	
39	0.003	17	0.003		1,00 ti	0.058	0.087
40	0.004	1 1 2	0.001 5			0.046	
Micro	-generator rat (rpp)	ing per phase		3.68	E01 C	kW	16 0 004
meası harmo	phase Micro-g urements are identics are not identicate this section	dentical for all t entical for each	hree phas n phase, p	ses. If the please	ic		20.70 E
Harm onic	At 45-55% c	of Registered acity ³	1009	% of Regis			nene en '
	Measured V Amps	Measur Amps	ed Value l	MV in	Limit in BS EN 61000-3-2 in Amps	Higher limit for odd harmonics 21 and above	
2	0.003	2 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N	0.006			1.080	
3	0.274	5.80, 25	0.289		- 7- 7	2.300	
4	0.003	200.0	0.003 9		280.0	0.430	
5	0.173	772	0.166 0		8: FTC	1.140	
6	0.002	450.C	0.002 7		p1 = 5	0.300	
7	0.114	110	0.108 6		190 J	0.770	
8	0.002	57 D F	0.003	7	F10 0	0.230	
9	0.085 7	550 W	0.085		PUD.C	0.400	
10	0.003	870 d	0.002		V 70 2:	0.184	
11	0.073 7	180.0	0.071 5		1436 m	0.330	
12	0.002 7	AN 3 23	0.002		1 100 0	0.153	

³ See the note in A.2.3.1 if 45-55% of **Registered Capacity** is below the minimum stable operating level. If an alternative loading level is chosen, the level should be indicated on the test form and the reason for not testing at 45-55% of **Registered Capacity** should be stated. The additional comments box at the end of the harmonics test sheet can be used for this.

13	0.064	, , , , , , , , ,	0.062			0.210	
14	0.003	3e0	0.003 5			0.131	
15	0.056 7	70.0	0.056 7		100.0	0.150	
16	0.004	W.	0.003 6	182 7		0.115	na na mara di kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kacama Kacamatan kacamatan
17	0.046 6		0.049 1			0.132	H-000 1915
18	0.002		0.002 7	is surg	itasa sata	0.102	
19	0.040		0.039	tu street		0.118	
20	0.003		0.002 9		Berns.	0.092	
21	0.033 5		0.031 6		101. g	0.107	0.160
22	0.001	(b ₂ , 1,	0.002 4		1975 J	0.084	
23	0.026 5	2.4%	0.025 9		1991 5	0.098	0.147
24	0.004	7-1	0.004		98 1 3.	0.077	471.0-
25	0.020 7	90 <u>7</u> 7	0.019		2673	0.090	0.135
26	0.003	11.15	0.004		0	0.071	
27	0.015 8	0080	0.017 0		136.5	0.083	0.124
28	0.003	Sursi	0.005 5		72 0	0.066	
29	0.012 7		0.013 8		109	0.078	0.117
30	0.002 8	07 17	0.004 6		10000 100000	0.061	
31	0.008	881	0.011 3		200 0	0.073	0.109
32	0.002 5		0.003			0.058	
33	0.007	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.007		0 2 1 1 3	0.068	0.102

ENA Engineering Recommendation G98 Issue 1 Amendment 7 2022 Page 54

34	0.003			0.002 6	IGA Pael	0.054	ng A
35	0.005			0.004	3 051561 .5 .	0.064	0.096
36	0.003 5			0.002 8		0.051	
37	0.007 9	1		0.006 4		0.061	0.091
38	0.003 5			0.005 0	84.0	0.048	
39	0.003			0.004		0.058	0.087
40	0.005		803	0.003 7		0.046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

Additional comments:

Power Quality – Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (Inverter connected) or Annex A2 A.2.3.3 (Synchronous).

The standard test impedance is 0.4 Ω for a single phase **Micro-generating Plant** (and for a two phase unit in a three phase system) and 0.24 Ω for a three phase **Micro-generating Plant** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must be normalised to the standard impedance as follows (where the **Power Factor** of the generation output is 0.98 or above):

d max normalised value = (Standard impedance / Measured impedance) x Measured value.

Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test.

The test date and location must be declared.

					end date						
Test location	Suzh	nou Na	ational Hi	-Tech Distr	ict, Suzhou, C	hina.					
	Star	tina	- 34-13		Stopping	, 15 D. 15			Runn	ina	
7.25.3	d(m		d(c)	d(t)	d(max)	d(c)		d(t)	P _{st}	- J	P _{It} 2 hours
Measured Values at test impedance	0.62%	%	0.09%	0%	0.56%	0.08%	6	0%	0.17		0.14
Normalised to standard impedance	0.62%	/ 6	0.09%	0%	0.56%	0.08%	6	0%	0.17	-0	0.14
Normalised to required maximum impedance	0.629	%	0.09%	0%	0.56%	0.08%	6	0%	0.17		0.14
Limits set under BS EN 61000-3-11	4%		3.3%	3.3%	4%	3.3%	6	3.3%	1.0		0.65
		0.4					0.25	_			
Test Impedance	R	0.4		Ω		X	0.20	,		Ω	
Standard Impedance	R	0.24	- 1	Ω	end redis	X	0.15	5 * 25 ^	postrict 6	Ω	suda evez "
Maximum Impedance	R	0.4	Turns (%)	Ω	each algar	X	0.25	5	er de la comitación de la La comitación de la comitación	Ω	senda cal

April 1, 2024

Test

Power quality - DC injection: This test should be carried out in accordance with A 1.3.4 as applicable.

The % DC injection ("as % of rated AC current" below) is calculated as follows:

% DC injection = Recorded DC value in Amps / base current

April 1, 2024

Test start date

where the base current is the **Registered Capacity** (W) / 230 V. The % **DC** injection should not be greater than 0.25%.

^{*}Applies to three phase and split single phase Micro-generators. Delete as appropriate.

[^] Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system. Delete as appropriate.

ENA Engineering Recommendation G98 Issue 1 Amendment 7 2022 Page 52

Test power level	20%	50%	75%	100%
Recorded DC value in Amps	0.0071	0.0081	0.0097	0.0045
as % of rated AC current	0.05%	0.06%	0.07%	0.03%
Limit	0.25%	0.25%	0.25%	0.25%
3.68K	gni on	2 H H T 1	2000 0	STRUCTE
Test power level	20%	50%	75%	100%
Recorded DC value in Amps	0.0028	0.0049	0.0088	0.0080
as % of rated AC	0.02%	0.03%	0.05%	0.05%
current				
Limit Power Quathree voltag	e levels an	d at Registered C	Capacity and	0.25% Tried out in accordance with A.1.3.2 and A.2.3.2 at the measured Power Factor must be greater than of the stated level during the test
Limit Power Quathree voltag	lity – Powe e levels an	er factor: This tes	t shall be car	rried out in accordance with A.1.3.2 and A.2.3.2 at
Limit Power Quathree voltag	lity – Powe e levels an s. Voltage t	er factor: This tes d at Registered C o be maintained v	st shall be can Capacity and vithin ±1.5%	rried out in accordance with A.1.3.2 and A.2.3.2 at the measured Power Factor must be greater than of the stated level during the test.
Power Qua three voltag 0.95 to pass	lity – Powe e levels an s. Voltage t	er factor: This test of at Registered Coop be maintained with 216.2 V	t shall be can capacity and vithin ±1.5%	rried out in accordance with A.1.3.2 and A.2.3.2 at the measured Power Factor must be greater than of the stated level during the test. 253 V
Power Qua three voltag 0.95 to pass	lity – Powe e levels an s. Voltage t	er factor: This test did at Registered Co be maintained volume 216.2 V	t shall be car capacity and within ±1.5% 230 V 0.9985	rried out in accordance with A.1.3.2 and A.2.3.2 at the measured Power Factor must be greater than of the stated level during the test. 253 V 0.9985
Power Qua three voltag 0.95 to pass	lity – Powe e levels an s. Voltage t	er factor: This test did at Registered Co be maintained volume 216.2 V	t shall be car capacity and within ±1.5% 230 V 0.9985	rried out in accordance with A.1.3.2 and A.2.3.2 at the measured Power Factor must be greater than of the stated level during the test. 253 V 0.9985
Power Qua three voltag 0.95 to pass Measured v	lity – Powe e levels an s. Voltage t	er factor: This test did at Registered Co be maintained volume 216.2 V	t shall be car capacity and within ±1.5% 230 V 0.9985	rried out in accordance with A.1.3.2 and A.2.3.2 at the measured Power Factor must be greater than of the stated level during the test. 253 V 0.9985
Power Qua three voltag 0.95 to pass Measured v	lity – Powe e levels and s. Voltage t	er factor: This test of at Registered Coop be maintained with the second of the second	230 V 0.9985 >0.95	rried out in accordance with A.1.3.2 and A.2.3.2 at the measured Power Factor must be greater than of the stated level during the test. 253 V 0.9985 >0.995

Protection – Frequency tests: These tests should be carried out in accordance with Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous). For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated.

Function	Setting		Trip test		"No trip tests"		
,	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip	
U/F stage 1	47.5 Hz	20 s	47.47Hz	20.1s	47.7 Hz 30 s	no trip	
U/F stage 2	47 Hz	0.5 s	46.95Hz	0.505s	47.2 Hz 19.5 s	no trip	
			6884.0		46.8 Hz 0.45 s	no trip	
O/F stage 1	52 Hz	0.5 s	52.03Hz	0.507s	51.8 Hz 120.0 s	no trip	
					52.2 Hz 0.45 s	no trip	

Note. For frequency trip tests the frequency required to trip is the setting $\pm\,0.1$ Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting $\pm\,0.2$ Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8 90, and a second 2 793 1, 20 and a second 2

in the control of the control of the control of the second of the control of the

- Mark Consideration and the state of the state of the consideration of the state of the consideration of the state of the state of the state of the state of

The contract of the contract o

ne appear in the committee of the professional description description

100

Protection – Voltage tests: These tests should be carried out in accordance with Annex A1 Ā.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous). For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Function	Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	184 V	2.5 s	183.5V	2.51s	188 V 5.0 s	no trip
					180 V 2.45 s	no trip
O/V stage 1	262.2 V	1.0 s	264V	1.01s	258.2 V 5.0 s	no trip
O/V stage 2	273.7 V	0.5 s	274.5V	0.504S	269.7 V 0.95 s	no trip
					277.7 V 0.45 s	no trip

Note for Voltage tests the Voltage required to trip is the setting ±3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ±4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection – Loss of Mains test: For PV **Inverter**s shall be tested in accordance with BS EN 62116. Other **Micro-generators** should be tested in accordance with A.2.2.4 at 10%, 55% and 100% of rated power.

To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels.9

Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Limit is 0.5 s	N/A	N/A	N/A	N/A	N/A	N/A

For Multi phase **Micro-generators** confirm that the device shuts down correctly after the removal of a single fuse as well as operation of all phases.

Test Power	10%	55%	100%	10%	55%	100%
Balancing load	95% of	95% of	95% of	105% of	105% of	105% of
on islanded	Registered	Registered	Registered	Registered	Registered	Registered
network	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity

⁸ See the note in A.2.2.4 if the suggested loading levels are below the minimum stable operating level. If alternative loading levels are chosen, the level should be indicated on the test form and the reason for not testing at 10%/55% of Registered Capacity should be stated. The additional comments box at the end of the loss of mains test sheet can be used for this.

⁹ If the device requires additional shut down time (beyond 0.5 s but less than 1 s) then this should be stated on this form.

Positive Vector Shift	49.0 Hz	+50 degrees	no trip	d menopeli
Negative Vector Shift	50.0 Hz	- 50 degrees	no trip	

Protection – Frequency change, RoCoF Stability test: The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the **Micro-generating Plant** does not trip for the duration of the ramp up and ramp down test.

Ramp range	Test frequency ramp:	Test Duration	Confirm no trip
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹	2.1 s	no trip
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	no trip

Limited Frequency Sensitive Mode – Overfrequency test: This test should be carried out in accordance with A.1.2.8. The test should be carried out using the specific threshold frequency of 50.4 Hz and **Droop** of 10%. The measurement tolerances are contained in A.1.2.8.

Test sequence at Registered Capacity >80%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	3669W	50Hz	380V/3800W	99.70%
Step b) 50.45 Hz ±0.05 Hz	3634W	50.45Hz	na e a a a a a a a a a a a a a a a a a a	98.75%
Step c) 50.70 Hz ±0.10 Hz	3450W	50.7Hz		93.75%
Step d) 51.15 Hz ±0.05 Hz	3120W	51.15Hz		84.78%
Step e) 50.70 Hz ±0.10 Hz	3449W	50.7Hz		93.72%
Step f) 50.45 Hz ±0.05 Hz	3636W	50.45Hz		98.80%
Step g) 50.00 Hz ±0.01 Hz	3669W	50Hz	The direction of the stand	99.70%
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	1843W	50Hz	380V/3800W	50.08%
Step b) 50.45 Hz ±0.05 Hz	1806W	50.45Hz		49.08%
Step c) 50.70 Hz ±0.10 Hz	1622W	50.7Hz	2011 1-71	44.08%
Step d) 51.15 Hz ±0.05 Hz	1291W	51.15Hz	ngama senagana aa	35.08%
Step e) 50.70 Hz ±0.10 Hz	1633W	50.7Hz		44.38%
Step f) 50.45 Hz ±0.05 Hz	1808W	50.45Hz		49.13%
Step g) 50.00 Hz ±0.01 Hz	1845W	50Hz		50.14%

Power output with falling frequency test: This test should be carried out in accordance with A.1.2.7.

Test sequence	Measured Active Power Output	Frequency (Magazine)	Primary power source
	of souther of beautied to	s bas babiyang al hog	Confirm that as inger
Test a) 50 Hz ± 0.01 Hz	3672W	50Hz	3800W
Test b) Point between 49.5 Hz and 49.6 Hz	3673W	49.5Hz	3800W
Test c) Point between 47.5 Hz and 47.6 Hz	3675W	47.55Hz	3800W

NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes

Re-connection timer.

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 2. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation should be provided that the **Micro-generating Plant** does not reconnect at the voltage and frequency settings below; a statement of "no reconnection" can be made.

	Measured delay		no reconnection v stage 1 limits of t		quency is brought to
30S 6	64S	At 266.2 V	At 180.0 V	At 47.4 Hz	At 52.1 Hz
Confirmation generator do	that the Micro -es not re-connect.	Not re- connect	not re-connect	not re-connect	not re-connect

Fault level contribution: These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (**Inverter** connected) and Annex A2 A.2.3.4 (Synchronous). Please complete each entry, even if the fault contribution is zero.

For machines with electro-magnetic output			For Inverter output		
Parameter	Symbol	Value	Time after fault	Volts	Amps
Peak Short Circuit current	i _p	N/A	20 ms	27V	12A
Initial Value of aperiodic current	Α	N/A	100 ms	23V	0.13A
Initial symmetrical short-circuit current*	I_k	N/A	250 ms	22V	0.12A
Decaying (aperiodic) component of short circuit current*	İDC	N/A	500 ms	19V	0.12A
Reactance/Resistance Ratio of source*	X/ _R	N/A	Time to trip	0.504s	In seconds

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

^{*} Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

Logic Interface (input port)	
Confirm that an input port is provided and can be used to reduce the Active Power output to zero	Yes
Provide high level description of logic interface, e.g. details in 9.4.3 such as AC or DC signal (the additional comments box below can be used)	Yes
Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 (Inverter connected).	N/A
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	
Cyber security	na and T
Confirm that the Manufacturer or Installer of the Micro-generator has provided a statement describing how the Micro-generator has been designed to comply with cyber security requirements, as detailed in 9.7.	Yes
Additional comments	

Logic Interface (input port):

the logic interface will take the form of a simple binary output. When the switch is opened the Microgenerator can operate normally. When the switch is closed the Microgenerator will reduce its Active Power to zero within 5 s. The signal from the Microgenerator that is being switched is DC 5 V.

Cyber security:

The inverter complies with the Cyber Security requirement of "Distributed Energy Resources – Cyber Security Connection Guidance" as a 'base line' and 'small' DER

The cyber security approach is including but not limited to below,

- 1. The data centers are hosted on Amazon Cloud Platform servers as private cloud services.
- 2. Amazon offers 'Amazon GuardDuty', which is designed to detect malware deployed on instances or container workloads running Amazon EC2, adds file scanning capabilities to workloads that use Amazon EBS volumes to detect malware, and also integrated with AWS Security Center.
- 3. All cloud service require a specified user name and password for access and are replaced periodically
- 4. The management interface is not provided externally.
- 5. HTTPS is used for Web and API, and TLS is used for device communication links.
- 6. MD5 password encryption is used for transmission.
- 7. All operating entities will be recorded including the IP address and account.
- 8. All static data must have an authorized TOKEN to access.
- 9. All remote access data must be provided with an authorized TOKEN.
- There is a communication reconnection mechanism to ensure reliable communication between the device and the server.
- 11. The causes of accidents and the maintenances are recorded.
- 12. All operators have individual user IDs and their own passwords with limited authority to their own DER.
- 13. Unused physical ports are disabled
- 14. The system cannot directly browse or access email addresses.